Electron Acceleration around the Supermassive Black Hole at the Galactic Center

نویسندگان

  • Siming Liu
  • Fulvio Melia
چکیده

The recent detection of variable infrared emission from Sagittarius A*, combined with its previously observed flare activity in X-rays, provides compelling evidence that at least a portion of this object’s emission is produced by nonthermal electrons. We show here that acceleration of electrons by plasma wave turbulence in hot gases near the black hole’s event horizon can account both for Sagittarius A*’s mm and shorter wavelengths emission in the quiescent state, and for the infrared and X-ray flares, induced either via an enhancement of the mass accretion rate onto the black hole or by a reorganization of the magnetic field coupled to the accretion gas. The acceleration model proposed here produces distinct flare spectra that may be compared with future coordinated multi-wavelength observations. We further suggest that the diffusion of high energy electrons away from the acceleration site toward larger radii might be able to account for the observed characteristics of Sagittarius A*’s emission at cm and longer wavelengths. Subject headings: acceleration of particles — black hole physics — Galaxy: center — plasmas — turbulence

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Apparent Deviations from Keplerian Acceleration for Stars Around the Supermassive Black Hole at the Galactic Center

We show that the time-dependent Doppler effect should induce measureable deviations of the time history of the projected orbit of a star around the supermassive black hole in the Galactic center (SgrA*) from the expected Keplerian history. In particular, the line-of-sight acceleration of the star generates apparent acceleration of its image along its velocity vector on the sky, even if its actu...

متن کامل

Long-Term Evolution of and X-ray Emission from a Recoiling Supermassive Black Hole in a Disk Galaxy

Recent numerical relativity simulations have shown that the emission of gravitational waves at the merger of two black holes gives a recoil kick to the final black hole. We follow the orbits of a recoiling supermassive black hole (SMBH) in a fixed background potential of a disk galaxy including the effect of dynamical friction. If the recoil velocity of the SMBH is smaller than the escape veloc...

متن کامل

Oscillating axion bubbles as alternative to supermassive black holes at galactic centers

Recent observations of near-infrared and X-ray flares from Sagittarius A, which is believed to be a supermassive black hole at the Galactic center, show that the source exhibits about 20-minute periodic variability. Here we provide arguments based on a quantitative analysis that supermassive objects at galactic centers are bubbles of dark matter axions, rather then black holes. An oscillating a...

متن کامل

Starbursts near supermassive black holes: young stars in the Galactic Center, and gravitational waves in LISA band

We propose a scenario in which massive stars form in a self-gravitating gaseous disc around a supermassive black hole. We analyze the dynamics of a disc forming around a supermassive black hole, in which the angular momentum is transported by turbulence induced by the disc’s self-gravity. We find that once the surface density of the disc exceeds a critical value, the disc fragments into dense c...

متن کامل

Double-double radio galaxies: remnants of merger of supermassive binary black holes

The activity of active galaxy may be triggered by the merge of galaxies and present-day galaxies are probably the product of successive minor mergers. The frequent galactic merges at high redshift imply that active galaxy harbors supermassive unequal-mass binary black holes in its center at least once during its life time. The secondary black hole interacts and becomes coplanar with the accreti...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2004